Close-to-Convexity of q-Bessel–Wright Functions

نویسندگان

چکیده

In this paper, we aim to find sufficient conditions for the close-to-convexity of q-Bessel–Wright functions with respect starlike functions, such as z1−z,z1−z2, and −log(1−z) are in open unit disc. Some consequences related our main results also included.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CERTAIN SUFFICIENT CONDITIONS FOR CLOSE-TO-CONVEXITY OF ANALYTIC FUNCTIONS

The object of this paper to derive certain sucient condi-tions for close-to-convexity of certain analytic functions dened on theunit disk  

متن کامل

certain sufficient conditions for close-to-convexity of analytic functions

the object of this paper to derive certain sucient condi-tions for close-to-convexity of certain analytic functions dened on theunit disk

متن کامل

Close-to-convexity, starlikeness, and convexity of certain analytic functions

‘The present investigation was supported, in part, by the Japanese Ministry of Education, Science and Culture tinder Grant-in-Aid for General Scientific Research (No. 046204) and, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant 0GP0007353. A preliminary report on this paper was presented at the spring meeting of the Mathematical Society of Japan held at W...

متن کامل

Plurisubharmonic functions in calibrated geometry and q-convexity

Let (M,ω) be a Kähler manifold. An integrable function φ on M is called ω-plurisubharmonic if the current ddφ ∧ ω is positive. We prove that φ is ωplurisubharmonic if and only if φ is subharmonic on all q-dimensional complex subvarieties. We prove that a ωplurisubharmonic function is q-convex, and admits a local approximation by smooth, ω-plurisubharmonic functions. For any closed subvariety Z ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10183322